United States Patent

US009443038B2

12 10) Patent No.: US 9,443,038 B2
’ ’
Jayakody et al. @5) Date of Patent: *Sep. 13, 2016
(54) METHOD AND SYSTEM FOR TAG 6,820,075 B2* 11/2004 Shanahan GOGF 17/3064
SUGGESTION IN A TAG-ASSOCIATED 707/769
DATA-OBJECT STORAGE SYSTEM 6,853,998 B2* 2/2005 Biebesheimer ... GOGF 17/30528
707/765
N .
(75) Inventors: Prasantha Jayakody, Seattle, WA 7,080,083 B2 712006 Kim v GO6F7(1);;%§
(US); Linh Dinh Tran, Shoreline, WA 7,200,599 B2* 4/2007 Simon GO6F 21/316
(US); Jiaxin Wang, Redmond, WA 707/754
(US) 7,251,648 B2* 7/2007 Chaudhuri GOGF 17/3053
707/749
N .
(73) Assignee: Vulcan Technologies LLC, Seattle, WA 7,257,570 B2 §2007 Rifse oo GOGE ;(7)/73/%2
(US) 7,328,204 B2* 2/2008 Coady ... GOG6F 17/30684
707/748
(*) Notice: Subject to any disclaimer, the term of this 7,337,180 B2* 2/2008 Spriestersbach G06F73/7%l§§
%atselg B Sixlgengednof (aldJUSted under 35 7,483,892 BI* 112009 Sommer et al.
S.C. 154(b) by ays. 2008/0091549 A1* 4/2008 Changcco....... G06Q 30/02
: : : : ol 705/14.66
Tlhl.s patent is subject to a terminal dis 2009/0254540 AL* 10/2009 Musgrove GOGF 17/30613
claimer. 2011/0010388 Al* 1/2011 MacLaufinccccooeoe 707/769
(21) Appl. No.: 13/286,720 * cited by examiner
(22) Filed: Nov. 1, 2011
Primary Examiner — Kim Nguyen
(65) Prior Publication Data (74) Attorney, Agent, or Firm — Olympic Patent Works
US 2012/0109982 A1~ May 3, 2012 PLLC
Related U.S. Application Data
(63) Continuation of application No. 12/511,007, filed on 67 ABSTRACT
Jul. 28, 2009, now Pat. No. 8,176,072. Embodiments of the present invention are directed to facili-
(51) Int. CL tating tag assignment to data objects as data objects are
GO6F 17/30 (2006.01) added to a tag-associated data-object storage system by
(52) US.Cl users of the tag-associated data-object storage system and to
[CH GOGF 17/30997 (2013.01) Tfacilitate subsequent display, access, and further character-
(58) Field of Classification Search ization of data objects that already reside in the a tag-
101 G 707/769, 805~ associated data-object storage system. Methods and systems
See application file for complete search history. of the present invention provide for automated tag sugges-
tion to users in order to both increase usability of the
(56) References Cited interface provided to the tag-associated data-object storage

U.S. PATENT DOCUMENTS

systems as well as decrease the likelihood of unnecessary
and unproductive tag proliferation within the tag-associated
data-object storage system.

5,920,859 A * 7/1999 Li .ccooivvininin GOGF 17/3061
707/711
6,643,639 B2* 11/2003 Biebesheimer ... GO6F 17/30867
707/709 8 Claims, 29 Drawing Sheets
tags groups E ‘ cortent
classas
code
anging
project alpha
project beta
profect delts
project gamma
spes
Ui
{adq dal La_dﬂ Ezﬂ {ﬁl lade ldei\

US 9,443,038 B2

Sheet 1 of 29

Sep. 13, 2016

U.S. Patent

a0t~

(o
.,
-.r.../;
. e .
a// \\\ - },
., e / 4
I14 \ /.‘/ o rd 4
", ., - 4 \
5, Ry . e \ \
ff L / \
// Hx\/f.x \ Y
\ pad . / /
\, e S /s i
Y 2 ™ / b
N e /..(g

5
N
\,
\
N
(,,a-\
NN
7/
— -

oad ’ .,..x. \\ ,...r.r/. XY
e ; J .
e . N
o e, g
»/, th\ - T Rt O | P
. -4 . E Ed
LS i
Ry et |
. e u
| -
!.:.:.f - I R "
T e

U.S. Patent Sep. 13,2016 Sheet 2 of 29 US 9,443,038 B2

204

£ e eann — \\
o - N
T \
\ ~3

r Y
Y
i #
I 7 WY e
3 1 &
: oy S
g
¥ LY jou \\
S a N
™~
| — Lo
Y ! E
\ N -~ o
e I, Rt
[I i L
M i
|
|
£
ALY
\
\ & 0
\ N '\\ =
\) N L™
\ / pd
A s
hY 7 e
v
O e, -
o E |
SN
. 3
~ /‘./

US 9,443,038 B2

Sheet 3 of 29

Sep. 13, 2016

U.S. Patent

I e

”?

B

e

one

UL

priz=ivs:g

T

g

LA o) pa
", .,

. - | /
fr;!:..fa - (:./.. . | . .ﬁ\
T S !;./
{)

AN P
e e ~ MVQ m

US 9,443,038 B2

Sheet 4 of 29

Sep. 13, 2016

U.S. Patent

]

m....l« e,

LLv

US 9,443,038 B2

Sheet 5 of 29

Sep. 13, 2016

U.S. Patent

(5

]

¢

G ainbiy

~

¢ hey ey By)

y)

U.S. Patent Sep. 13,2016 Sheet 6 of 29 US 9,443,038 B2

US 9,443,038 B2

Sheet 7 of 29

Sep. 13, 2016

U.S. Patent

aLd

(487

Gl

J ainb

T

zzp BN ‘dnoul Aue) Aiug ppe

azg — (73 dnosb) seinuz 1eb
ars — U800 2 e) ey dnouB) sBe) o jeb

g — ey dnoib) sbey ;180

wil {01381 '8 "0 v 1 2 1t < {y dnoub) sBeg A 00

A (11 dn0sB = vy dnosf
©0L oL

xf ™y
", k e, |
s A9
\ :
w 5,
. o S Paw oy W Ln e N P u?{ 5 "
{ KN Cearvn g (B a7

.z ORoB

US 9,443,038 B2

218 Lig 0LE

Sheet 8 of 29

Sep. 13, 2016

U.S. Patent

s f /
;)
“““““““ | S S S
““““““““““ — VAR S |
wps | [fep i jppe ws ! |lepl ippe wal {ep| lpope
, e , sdnoh , sbey
7 ‘ \ o ‘ Y A
\ x\
7 7 /
f { 1
g..\ \J\ \u
i I

US 9,443,038 B2

£R2

8P ppe pe ep ppe Hpe 2P ppe|

Sheet 9 of 29

Sep. 13, 2016

i
asds
ewwied oafosd | T
elay oainid |
zydie aloid

e,

U.S. Patent

wienoduy
subus
B0
SHESRD
LS00 | sdnoif sBey
£ B!
\\\ “L» ,_..r
7 5,
ﬂm,,\\\ ,.,,.,
Y)
PO
4%

~oLg

US 9,443,038 B2

Sheet 10 of 29

Sep. 13, 2016

U.S. Patent

g 8unbi4

| Hpe

j2p |

pi

oo

ppE

2=
Lt

=P ppe

218

i

oads

gusged yoofoid
e1eq wefoud
eudie waloid

¥4

WEUodIL

auifus
30D
SASSEI0

WBIa0

shey

7

g

US 9,443,038 B2

Sheet 11 of 29

Sep. 13, 2016

U.S. Patent

7

/

A\

jips

1op

Bp ppe

\
Hpo !

1
F
ap Mnnwm

i

seds

zunueb oaelosd
e1e joafoid
euyde neloid
wepodus
auibls

8poo

sousBD

HISIIGS

g0

by

US 9,443,038 B2

=18 &Inbi e

P
T \
bzg o
._.ww/.\m\
o fordy
B |ppe upa| |ep| [ppe wpa| iep %@_

Sheet 12 of 29

Sep. 13, 2016

" eyep osloid +
e Bl 4

i

oads

swweb pefoud
e1eq wsford
eudie 19efoid
suBue T

BP0 ™

SO85R0 | T (Eg

WIBIO0 adno 58m1

U.S. Patent

US 9,443,038 B2

Sheet 13 of 29

Sep. 13, 2016

U.S. Patent

e

B8P

ppe

}ba

iips Bp ppe |

SO0

in
oads

suieb 1osfoid
eyap ofoid |
gyey joafoid
eijdie nefoid
suilbue

Bp00

SHESE0

sBey

US 9,443,038 B2

Sheet 14 of 29

Sep. 13, 2016

U.S. Patent

., 878
x\ \
(| /
Y
S ,mex.\ﬁtx*wm
ey R ppR Wpe | | ep A%mm ypai 1iep| ppe
, A _
AN
7
A 7
: apoo gydje 1osfoid
/ oads
0es eunueb afoid
eyap josloid
g1sg 1oainid
eydie 1osloid-
aubLa
2poo |
EEESED
WIBIUGD senoib sBg

128

) o

928

US 9,443,038 B2

Sheet 15 of 29

Sep. 13, 2016

U.S. Patent

Lo anb

@ Ay

-

wai |\ @epi ippe wpsl f@p o ppe pel l@Epi o ippe
UolIosep sseD
¢ Azeigy eyepn | i
z Adzigl Blep | vads
{ %_ﬁ‘m@; mwﬁ.ﬁmﬁ , sunueh H.Uﬁ?u.w& -
J ZASSRIT P BYSP A% gyep 1alod]
leutbus sinduioo eyep | [HERERE])
Tisesses poddns eyep eyde wsioid
18w Aouweus glep auibus
SOSEBID O] elED SpoD
{zisesseR N gyap mmwww@w
Ll SESSBIO [BYep (I
A UBIIOT sdnmb shey
Ir
.\\W\N
08

US 9,443,038 B2

Sheet 16 of 29

Sep. 13, 2016

U.S. Patent

o
7
|/
4
“““ .}Lr\\u
V(,\..E “““
sl |@p | | ppe ps!l LEp | | ppe pal 1epy [ppe
1. [-
/ o
opa ; i
“ pasll
“ 3 1 g ,f;.e./.‘
g | I weroduy BFR
Ty oadsTin iy
200s | aads
LOBIUSLUNSOP BTG TOBIeIT
8003 elap slosd
g Blog josioad |
L eudiz "waloidnepyun . ‘ eydie 108f04d T avg
B R e — du Buigh IS
ovg duw eyep BNV
duy g18g SOSSED
. it eydie |
TIBILOD [sdnoib sfie;

g

U.S. Patent Sep. 13, 2016

Sheet 17 of 29

”aipha

alpha stuft

beta

beta-related

class definitions

class defs

classes

delta stuff

deplorable

deprecated

“engine

~engine code

fred's stuff

farout

featureless

gamma

- gammarama

L gamma gode

hellacious

hornfio

hot

fcky

jgnominious
flustrious
index
indexes
ielio code
just-in-time
~ Kathy

kiriri this
lamentabie

{aughabie

project alpha

project beta

project delta

g(}g T

- oproject gamma

project epsilon

~ project epilon

guack

Figure 9

US 9,443,038 B2

US 9,443,038 B2

U.S. Patent Sep. 13, 2016 Sheet 18 of 29

1010

1004 /
N .
. [
\\ o e
f/'/
tags / ‘
/1008
/}f;
/,f
."',/",
P

‘ i N

/‘//)/
F"f
!/.VA
avg time //
{o lncate
particular 1010 //
object AN 7
\\ //
N
e ya
7 4008 4
1002 | ////
’ -/"F
\,ﬁ\\ ‘/_z
\“_:-" - -
f \\
| # tags 5\
} \
4 {?;08 1004

Figure 10B

US 9,443,038 B2

Sheet 19 of 29

Sep. 13, 2016

U.S. Patent

4813

L} &inbi

~ OLLL
y
L /
i1
\L /
“““““ Nh]
VT 7
upa] | ep :%mm upsl {@p] ippe wpsi |Epi ippR
MDA | BUN ABDPUGHKY
UGS 1L Run ARpulgy
ul o 1. sunf Aepuoiy |
DUE JWGHS | | Sunp ABpLUDWN
B W01 | L Gunp REpUOR N - wonpod
g i |1 ounp Aepuoly | sapAor dnolb g |
““““ ‘ Aued Aued!
/ |
WIBRIOD / sdnof shey
/ _
7
/
80L1

vOLL

US 9,443,038 B2

Z1L enbid

Sheet 20 of 29

Sep. 13, 2016

U.S. Patent

th

&

BOZL

US 9,443,038 B2

Sheet 21 of 29

Sep. 13, 2016

U.S. Patent

pocl

US 9,443,038 B2

Sheet 22 of 29

Sep. 13, 2016

U.S. Patent

bOp1

Vil einbiy

SILBLDS

8oV |

10

S A)

US 9,443,038 B2

Sheet 23 of 29

Sep. 13, 2016

U.S. Patent

Ayl einbid

ozpL FEVL ;)

. |1 \
zzpL \ sevl | Eevl \ /" oepl
Siusliale / ,, f,f R_, m \, \.\\
— - R RN A N S S A
T
f M fi,w,f.x .
e } | MMH f
@f@éé aLbl
?:!f@f}ri _\ 7
e/
B H Wf.! -.
i
’ W M | ,fmf(f!f "
: M T~ Zivl
P @ f.l)..}).(x ¢
Z1 -W mm M w/f,?f /
N VR N . o - ﬁ.ﬁii!ktcfﬂ
e A , DRV L dosp
gipL - R \w H M [
“ \ \\ = Su e 4 \‘. . Q.r
wma.Wma \\ ./..\ % g
/ \
g

U.S. Patent Sep. 13, 2016 Sheet 24 of 29 US 9,443,038 B2

Y
8-
s
#
&
®
®
&
&
&
“ O
® 3
& g
: 0
& —
% £ &
: T
. I

US 9,443,038 B2

Sheet 25 of 29

Sep. 13, 2016

U.S. Patent

Qi1 ainbi

= & S N,
N JuBURlE o,
\\.a?!.f‘.M..‘. ¥ w T g ; s 4 3 5 T T ' + T g r ¥ 7 7 A ¢
/ o xw T 9 o
FA 2 ™ .| % %
RGEREE
I :ﬁf.// “ W M % =
" . \ﬁ N/ @
. I

10

U.S. Patent

Sep. 13, 2016 Sheet 26 of 29

@
2
&
53
B
@
&
]
&
L]
&
B
%
&
&
&
@
&
£
@
&
%
&
]
R
B

y

US 9,443,038 B2

US 9,443,038 B2

Sheet 27 of 29

Sep. 13, 2016

U.S. Patent

491 8inbig

glUSLaD

T Y 7 L 1) 7 T 7 T * g Y (4 Y T T T

/
!L«—v—@ .
/
e
‘@ L
o
-
e 1
& P
5

i
It

& o

B2
s
-

L s T PR S S SO U U VU Y

(>4

&
@

3

e

s 13
m H
i] i d
~y H H T 4
%, o, o <
. ~ v 2
— — 1 i
., sy wmi
R i
e, R N 5
- - -
Y ~L_g
e R 7

I

. daip

U.S. Patent

et

Sep. 13, 2016

~,
avent loop }
e
¥

wail for next event | ¢

process first event

//‘,‘1‘, e
<f" adddata ™ Y
N obiect d
\\ ~ /
~o T

1508
a,{ o

Sheet 28 of 29

US 9,443,038 B2

add data aiject

4
\\\\\\ /‘QF
7 N
/,/" more
avanis
\,\ e
~.. fjueusd f,«»’
.. ']." -~

T

e

Figure 15

U.S. Patent Sep. 13, 2016 Sheet 29 of 29 US 9,443,038 B2

{ add data object

N oy

y

alfocate entity instance | -
for object

K

compute characteristic{ -
victor for object

¥

retrieve array of - 1e0e
pointers to tag -~
instances from data-
object-storage system

¥
retrigve array of P 1608
pointers o group o
insfances from data-
abject-storage system
P h\\'x, k »
f.«"f’ \\\ : P i 6 1 G
{ o retum :} tagSuggestions | |~
Y K ~
N S 1818
3 /
/
: : v o181z
finish adding data display returned e
abject candidate tags
Y
. . 1814
‘//_/

digplay relurnaed 2

roupSuggestions | | -
candidale groups groupsuga

1616 Figure 16

US 9,443,038 B2

1
METHOD AND SYSTEM FOR TAG
SUGGESTION IN A TAG-ASSOCIATED
DATA-OBJECT STORAGE SYSTEM

CROSS-REFERENCE TO RELATED
APPLICATION

This application is a continuation of application Ser. No.
12/511,007, filed Jul. 28, 2009 now U.S. Pat. No. 8,176,072.

TECHNICAL FIELD

The present invention is related to data-storage systems
and, in particular, to a tag-suggestion method and system
that provides a concise list of candidate tags most likely to
be associated with a data object that is to be stored in a
tag-associated data-object storage system.

BACKGROUND OF THE INVENTION

Computer hardware, computer operating systems, and
computer networking systems have evolved at tremendous
rates during the past 50 years. Electronic data-storage sys-
tems have evolved at similar rates, become increasingly
robust, capable, and useful and providing ever increasing
data-storage capacities. Initially, electronic data was stored
on Hollerith cards, on magnetic tape, and, subsequently, on
removable disk packs, and was generally loaded, at run time,
for use by stand-alone software programs running on stand-
alone computer systems. Currently, vast amounts of data are
now routinely stored in networked computer systems and
specialized data-storage systems, available for concurrent
access by myriads of local and remote users. Data can be
easily replicated across mass-storage devices and systems
for high reliability and high availability and can be managed
and accessed through various feature-rich interfaces pro-
vided by database management systems and distributed file
systems. However, along with at least geometrical growth in
data-storage capacities, accessibility, and robustness, the
complexities of both file systems and database management
systems, including the complexity of configuring and man-
aging such systems, have also grown.

Recently, a new type of data-object storage system has
been developed in order to simplify data-object storage and
retrieval. Rather than relying on predefined database sche-
mas and elaborate user interfaces, relying on configuring
complex hierarchical distributed file-system structures, or
configuring and managing distributed reversion-control sys-
tems, certain of these new, simplified data-object storage
systems allow data objects to be associated with tags, or
attributes, by users of the systems, stored in the data-object
storage systems in association with the tags, and subse-
quently recovered from the data-object storage systems by
specifying one or more tags. While the simplified interface
provided by this new class of data-object storage systems
provides welcome increases in usability and flexibility to
users of the data-object storage systems, new design chal-
lenges are frequently encountered. Therefore, developers,
vendors, and users of simplified, tag-associated data-object
storage systems continually seek new methods and tech-
niques for improving current functionality and for adding
new functionality to these simplified data-object storage
systems.

SUMMARY OF THE INVENTION

Embodiments of the present invention are directed to
facilitating tag assignment to data objects as data objects are

10

15

20

25

30

35

40

45

50

55

60

65

2

added to a tag-associated data-object storage system by
users of the tag-associated data-object storage system and to
facilitate subsequent display, access, and further character-
ization of data objects that already reside in the a tag-
associated data-object storage system. Methods and systems
of the present invention provide for automated tag sugges-
tion to users in order to both increase usability of the
interface provided to the tag-associated data-object storage
systems as well as decrease the likelihood of unnecessary
and unproductive tag proliferation within the tag-associated
data-object storage system.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a general computing environment in
which a tag-associated data-object storage system can be
employed.

FIG. 2 illustrates an exemplary centralized data-manage-
ment system in the context of the five-software-developer
computational environment discussed with reference to FIG.
1.

FIG. 3 illustrates certain of the logical structures that may
be employed by a centralized data-object storage system,
such as that discussed with reference to FIG. 2.

FIG. 4 illustrates use of a tag-associated data-object
storage system.

FIG. 5 provides a logical or conceptual view of a tag-
associated data object stored in a tag-associated data-object
storage system.

FIG. 6 illustrates groups and subgroups of data objects
within a domain of data objects stored in a tag-associated
data-storage system.

FIG. 7 illustrates certain generalized operations that may
be provided by a tag-associated data-object storage system.

FIGS. 8A-1 illustrate a simple user interface provided by
a hypothetical, currently-available tag-associated data-ob-
ject storage system.

FIG. 9 illustrates a portion of a tag list for a domain of a
tag-associated data-object storage system that has experi-
enced tag explosion.

FIGS. 10A-B illustrate two general trends related to tag
explosion.

FIG. 11 illustrates ramifications of the principles of
embodiments of the present invention at a user-interface
level.

FIG. 12 illustrates a basic comparison operation by which
two documents can be compared to produce a similarity
metric.

FIG. 13 illustrates a cumulative characteristic vector.

FIGS. 14A-F illustrate, using graphs of discrete functions,
a technique for selecting candidate tags for a data object
according to one embodiment of the present invention.

FIG. 15 shows a control-flow diagram for an event loop,
running on a user computer, which underlies a user interface
provided to the user by a tag-associated data-object storage
system that represents one embodiment of the present inven-
tion.

FIG. 16 is a control-flow diagram for the routine “add-
DataObject,” called in step 1508 of FI1G. 15 and representing
one embodiment of the present invention.

DETAILED DESCRIPTION OF THE
INVENTION

Embodiments of the present invention are directed to a
method and system for automated tag, or attribute, sugges-
tion in a tag-associated data-object storage system. In the

US 9,443,038 B2

3

initial portions of the following discussion, tag-associated
data-object storage systems are introduced and character-
ized, to provide a context for subsequent discussion of
problems addressed by various embodiments of the present
invention as well as the various embodiments of the present
invention.

FIG. 1 illustrates a general computing environment in
which a tag-associated data-object storage system can be
employed. In FIG. 1, a number of user computer systems are
represented as rectangles, including user computer system
102. In FIG. 1, five different users access data objects,
represented in FIG. 1 by small rectangles, including rect-
angle 104, stored on the five user computer systems used by
the five different users 102 and 106-109. The five users may,
for example, be five software developers within a software-
development project, each generating program-code files,
executables, design documents, and other files that are
shared among the five software developers. The software
developers may generate the files, or data objects, on their
own personal computers and store the data objects within
their local file systems. The developers can also exchange
data objects with one another through a distributed file
system or by transferring data objects to one another as
email attachments or through various file-transfer protocols.
This functionality is generally supported by common per-
sonal-computer operating systems and personal-computer
networking systems.

Unfortunately, the simple data-object sharing system
shown in FIG. 1, implemented using standard personal
computer (“PC”) operating-system and networking func-
tionality, can quickly lead to serious problems. One problem
is that multiple copies of any particular data object may end
up distributed across multiple computer systems, and may
be modified by multiple users or used as a parent data object
in a chain of derived data objects in different systems, with
the result that, following modification or derivation, there
remains no single, authoritative copy or source of the data
object. Ultimately, a particular user may need to find, collect,
and merge all of the different copies and derivations in order
to generate an authoritative or source data object. Another
problem is that, with no single, well-known starting point for
searching, it may become difficult or impossible to find all
of the data objects related to the software project, or a
particular aspect of the software project. Yet another prob-
lem is that two different users may delete a particular data
object, two copies of which are stored on their respective
PCs, each user assuming that the other user intends to
maintain a copy of the data object on his or her PC. As a
result, the data object may become irretrievably lost. Many
other similar and related problems can quickly arise in such
ad hoc data-object storage systems.

As a result of these types of problems, a variety of
different types of data management systems have been
developed, including database management systems, distrib-
uted file systems, version-control systems, and other such
data-management systems. These various types of data-
management systems may be implemented as centralized
data-object storage systems or as distributed data-object
storage systems that are accessible by multiple local and
remote users through a common interface and that provide
robust data storage, allowing the users to create, store, and
share data objects among themselves without encountering
the types of problems discussed above with reference to
FIG. 1.

FIG. 2 illustrates an exemplary centralized data-manage-
ment system in the context of the five-software-developer
computational environment discussed with reference to FIG.

10

15

20

25

30

35

40

45

50

55

60

65

4

1. In FIG. 2, the five developer PCs 202-206 are fully linked
together by one or more networking systems so that each
developer can exchange electronic data with each of the
other developers, just as in the computational environment
shown in FIG. 1. As in the computational environment
shown in FIG. 1, each user may generate multiple data
objects, including program-code files, executables, and other
such project-related data objects. However, unlike the ad hoc
system discussed with reference to FIG. 1, data-object
storage is managed by a centralized data-object storage
system 210. Although this system is shown as a single,
centralized system in FIG. 2, the system may be one or a
number of the developers” PCs running a distributed data-
object-storage and data-object-management system or
another type of multi-computer system. In the computational
environment shown in FIG. 2, users store data objects in the
centralized data-object storage system 210 and retrieve data
objects from the centralized data-storage system 210, rather
than simply sharing data objects among themselves in an ad
hoc fashion. The centralized or distributed data-object stor-
age system may include a variety of features and technolo-
gies to ensure that an authoritative copy of any particular
data object always resides in, or can be assembled from,
information reliably stored within the centralized data-ob-
ject storage system. The centralized or distributed data-
object storage system may provide a user interface and
data-object-storage protocols for version control, locking of
data objects, reservation of data objects for future locking,
redundant backup, and other such features to assist the
developers in efficiently and cooperatively storing and
retrieving data objects from the distributed or centralized
data-object storage system.

FIG. 3 illustrates certain of the logical structures that may
be employed by a centralized data-object storage system,
such as that discussed with reference to FIG. 2. The data
objects may be logically organized into one or more hier-
archical trees 302 of data objects, each tree including a root
node 304 and tiers of branching intermediate nodes, with
lowest-level leaf nodes including pointers to individual data
objects 306. This hierarchical arrangement of data objects
may be implemented by one or more relational database
management tables 308, as well as a traditional hierarchical
file system, so that a relational query-language interface,
such as an SQL-based interface, can be used to implement
useful and powerful data-object searching and retrieval
facilities, version control, different types of data-object
locking, and many of the other features provided by such
data-object storage systems.

While the distributed or centralized data-object storage
systems discussed with reference to FIGS. 2 and 3 provide
mature, powerful, and highly reliable data-object storage,
these systems often involve time-consuming design, con-
figuration, and management. For example, the hierarchical
organization of data objects often needs to be at least
partially designed and created in advance of data-object
storage and retrieval. Furthermore, these systems may pro-
vide relatively complex user interfaces in order to offer, to
users of the systems, the many different features and facili-
ties designed into these systems. In many cases, these
systems are considered to be too expensive and complex for
many types of unstructured or lightly structured, spontane-
ous data-object sharing and storage within user communi-
ties, including project-oriented software-developer commu-
nities and loosely structured communities arising from
social networks, interest groups, and other such associations
that arise among networked computer users.

US 9,443,038 B2

5

In order to provide a simpler interface and to provide the
ability to spontaneously create and store data objects by
multiple users for subsequent retrieval and access, tag-
associated data-object storage systems have been developed.
FIG. 4 illustrates use of a tag-associated data-object storage
system. The tag-associated data-object storage system can
be viewed, as shown in FIG. 4, as a collection of tag-
associated data objects 402. Each data object in a stored
collection of data objects, such as data object 404, is
associated with one or more tags 406. The tags are generally
alphanumeric character strings, and are generally relatively
short. For example, tags may be limited to a maximum of ten
characters and symbols, 20 characters and symbols, 128
characters and symbols, or some other reasonable maximum
character-and-symbol length. Tags are often meant to be
descriptive attributes, such as natural-language adjectives
that characterize a data object to the user who initially stores
the data object in the data-object storage system. However,
there is no requirement that tags be semantically related to
the objects with which they are associated. That user, or
other users, can subsequently employ one or more of the tags
to describe a desired data object for retrieval from the
data-object storage system. As in the centralized or distrib-
uted data-object storage system discussed with reference to
FIG. 2, each user 410-414 of the tag-associated data-object
storage system may store tag-associated data objects into the
tag-associated data-object storage system and retrieve tag-
associated data objects from the data-object storage system.
The tag-associated data-object storage system may be imple-
mented as a centralized data-object storage system or as a
distributed data-object storage system, either by undertaking
new design and implementation or by using relational data-
base management system technology, distributed file sys-
tems with additional scripts for programs, or any of various
currently available electronic data storage systems and
methods.

Tag-associated data-object storage systems have advan-
tages for data-object management among a group of coop-
erating users. As one example, rather than undertaking a
tedious, expensive, and time-consuming data-object-stor-
age-system configuration and carrying out ongoing moni-
toring and maintenance of the system, users can immedi-
ately begin to store and retrieve tag-associated data objects
to and from a simple tag-associated data-object storage
system provided as an easily accessible tool to the users. In
general, the tag-associated data-object storage systems pro-
vide a simple user interface, an example of which is dis-
cussed further below, to allow a user to associate one or
more tags with a data object and to then store the tag-
associated data object into the data-object storage system.
Similarly, a simple user interface allows users to select one
or more tags, and to then retrieve data objects from the
tag-associated data-object storage system associated with
the selected tags. From the user’s standpoint, the tag-
associated data-object storage system is essentially struc-
tureless, apart from user-defined tags that users themselves
associate with data objects that they store into the tag-
associated data-object storage system. The tag-associated
data-object storage system may provide additional manage-
ment tools, redundant storage of data objects, data-object
recovery in the case of disk failures or other component
failures, and other features normally associated with com-
plex, centralized data-object storage systems. From a user’s
standpoint, however, the data-object storage and data-object
retrieval interfaces are simple and intuitive.

FIG. 5 provides a logical or conceptual view of a tag-
associated data object stored in a tag-associated data-object

10

15

20

25

30

35

40

45

50

55

60

65

6

storage system. A data object 502, in the most general case,
may be one or more bytes of digitally encoded information.
In many cases, data objects are application-generated files,
such as documents produced by word-processing applica-
tions, application data files, images, and other files. In many
tag-associated data-object storage systems, the data objects
are assumed to be files that are managed by operating
systems or stand-alone file systems.

For purposes of describing the present invention, the
structure and content of data objects are not relevant, except
for the fact that the data content of data objects is assumed
to be characterizable by one or more metrics, parameters, or
other numeric values. As one example, a data object may be
a text file, in which case the data object can be characterized
by the frequencies of word occurrences within the docu-
ment, a length, in characters, frequency of occurrence of
various phrases and other word combinations, the presence
of certain word or phrase patterns, and other such metrics
and characteristics. In embodiments of the present invention,
various numerically valued characteristics and parameters
by which a data object is described can be considered to be
the components of a vector 504 that characterizes the
contents of the data object, and that is therefore referred to,
below, as a “characteristic vector.” In certain embodiments
of'the present system, different characteristic vectors may be
associated with a particular data object at different points in
time, with respect to different operations or tasks that are
being undertaken on behalf of a user, and with respect to the
types of data objects that are stored in, or being retrieved
from, a tag-associated data-object storage system. For
example, a characteristic vector computed for an email data
object during retrieval of emails from a tag-associated
data-object storage system may have a different number and
types of elements than a characteristic vector computed for
a news-article data object during retrieval of news articles
from a tag-associated data-object storage system. The char-
acteristic vectors for data objects may be of extremely high
dimensionality. For purposes of describing the present
invention, the vectors are assumed to be normalized, mean-
ing that the dot product of any data-object characteristic
vector with itself produces the value “1.” A non-normalized
vector can easily be normalized by dividing the vector
components by the vector’s length, or magnitude:

A
l(A- A"

Anormatized =

In many cases, characteristic vectors are not linear combi-
nations of orthonormal basis vectors, and therefore the dot
product may include many additional product terms in
addition to the squares of the components.

Returning to generalized, currently existing tag-associ-
ated data-object storage systems, each data object stored in
a tag-associated data-object storage system is also generally
associated with user-defined tags 506, as discussed above.
As also discussed above, the tags are generally alphanu-
meric character strings, often with natural-language mean-
ings.

In a generalized tag-associated data-object storage sys-
tem, data objects may belong to groups of data objects
and/or to subgroups of groups or other subgroups, each
group or subgroup defined by the tags associated with the
data objects that the group or subgroup contains. FIG. 6
illustrates groups and subgroups of data objects within a
domain of data objects stored in a tag-associated data-

US 9,443,038 B2

7

storage system. All of the data objects may be considered to
be members of a highest-level domain 602, shown in FIG.
6 as the collection of data objects, such as data object 604,
within a dashed circle 606. A tag-associated data-object
storage system may support multiple storage domains, or,
alternatively, a tag-associated data-object storage system
may support only a single domain. In addition, various
different groupings of data objects within a domain may be
defined by sets of one or more tags. In FIG. 6, groups of tags
are shown as a collection of tags within circles, such as the
tags within circle 608. In the most general case, the different
groupings of data objects may not be mutually exclusive, so
that groups may overlap one another as shown in FIG. 6. As
one example, the data objects within circle 608 may all be
associated with the tag “blue,” while the data objects within
circle 610 are associated with the tag “red.” The data objects
within the intersection of groups 608 and 610, in the region
612 of overlap between groups 608 and 610, are those data
objects associated with both the tag “blue” and the tag “red.”
In FIG. 6, the group of data objects defined by circle 614 is
shown to include two subgroups defined by circles 616 and
618. Various different tag-associated data-storage systems
may constrain association of tags with data objects, and may
not formally recognize groups, subgroups, and other such
groupings of data objects stored in the tag-associated data-
object storage system.

It is important to note that, in many embodiments of the
present invention, groups and other hierarchical data-object
organizational concepts may be deliberately not supported.
In many case, groups and other hierarchical organizational
concepts fail to provide significant benefit to users, and may
have various deleterious affects on the usability of a tag-
associated data-object storage system, including contribut-
ing to tag explosion, as discussed below.

FIG. 7 illustrates certain generalized operations that may
be provided by a tag-associated data-object storage system.
In FIG. 7, four data objects 702-705 are shown to be
members of a group of data objects referred to as “group A”
710. Note that a group may be an entire domain, such as
domain 602 shown in FIG. 6, or may be a subset of a
domain, such as groups 608, 610, 614, 616, and 618 in FIG.
6. Exemplary operations include: (1) defining a group 712;
(2) retrieving a list of all of the tags associated with members
of a group 714; (3) retrieving the common tags of all
members of a group 716; (4) retrieving all of the tags
associated with members of a group in frequency-of-asso-
ciation order 718; (5) retrieving a list of data objects that are
each associated with the tags in a list of tags supplied as
arguments 720; and (6) adding a data object, or entity, to the
tag-associated data-Object storage system 722. Many addi-
tional operations may be provided by a particular tag-
associated data-object storage system.

FIGS. 8A-I illustrate a simple user interface provided by
a hypothetical, currently-available tag-associated data-ob-
ject storage system. As shown in FIG. 8A, the simple user
interface 802 includes a “tags” button 804, a “groups” button
806, and a “content” button 808. For each of the above-
mentioned buttons, there are “add” 810. “delete” 811, and
“edit” 812 buttons to provide for adding and deleting tags,
groups, and data objects to and from the tag-associated
data-object storage system as well as editing representations
of tags, groups, and data objects. In FIG. 8B, a user has
placed a cursor 814 on the “tags” button 804 and input a
mouse click resulting in display of a list of tags 816
associated with data objects stored in the tag-associated
data-object storage system. As with many user interfaces,
were the list of tags too long for display in the user interface,

10

20

25

30

35

40

45

50

55

60

8

the list window may display a scroll bar or paging button in
order to allow a user to scroll or step through a longer list of
tags than can be displayed at one time. In FIG. 8C, the user
has placed a cursor over a particular tag, the tag “important”
817, and input a mouse click in order to select, or highlight,
the tag “important.” Once the tag is selected, the user can
place a cursor over the “delete” button 811, as shown in FIG.
8D, in order to delete the tag. In FIG. 8E, the displayed list
of tags 820 no longer includes the tag “important.” In FIG.
8E, the user has subsequently placed the cursor 821 over the
“add” button 810 to add a tag to the list of tags. A tag-entry
window 822 is displayed, into which the user can type the
alphanumeric-character-string representation of the new tag.
Inputting another mouse click, or depressing the “enter” key,
results in addition or the new tag to the list of tags, as shown
in FIG. 8F. More than one tag can be selected at a given time.
When tags are deleted, the definitions of groups that include
the deleted tag are also modified and, in the case of a group
defined only by the deleted tag, the group itself may be
deleted.

In FIG. 8G, the user has selected two tags 826 and 827 and
has input a mouse click to the “add” button 828 in order to
invoke a new-group-entry window 830 into which the user
has typed the name of a new group 832 defined as a list of
the two selected tags 806 and 807. The new group “project
alpha code” can then be added to the tag-associated data-
object storage system by depressing the “enter” key or
through an additional click to the add button 828. In FIG.
8H, a user has replaced the cursor 830 over the content
button 808 and input a mouse click in order to display a list
of data objects 832 associated with the tags “classes” 834
and “project delta” 836. The data objects may have names
assigned by users and input to the tag-associated data-object
storage system, in certain tag-associated data-object storage
systems, or may have file-system file names, in alternative
tag-associated data-object storage systems. In FIG. 81, a user
has input a mouse click to the add button 840 in order to
display a browser window 842 that allows a user to browse
through a local file system in order to identify a particular
file 844 that the user wishes to add, as a new data object, to
the tag-associated data-object storage system. The user input
displays a list of all of the tags 846 currently defined for
objects in the tag-associated data-object storage system as
well as displaying additional tag-entry windows 848 to
allow a user to define new tags to associate with the data
object corresponding to the file 844 that the user intends to
add as a new object into the tag-associated data-object
storage system. The user may have also selected a group 850
to which the data object is to be assigned, resulting in
automatic selection of the tags included in the list of tags that
define the group. By depressing the “enter” key or inputting
an additional mouse click to the “add” button 840, the file
844 is added, as a new data object, to the tag-associated
data-object storage system, with the new data object asso-
ciated with the group “alpha IMP” 850, and the five tags
“project alpha,” “spec,” UL” “important,” and “rev 4.”

As those familiar with computer applications and data-
management systems certainly appreciate, there are an
almost limitless number of different simple user interfaces
that can be designed and implemented for any particular
tag-associated data-object storage system. The interface
described with reference to FIGS. 8A-1 is provided merely
as an example of a user interface provided by a tag-
associated data-object storage system.

While tag-associated data-object storage is intuitive,
simple, and can be undertaken relatively spontaneously by
groups of users without incurring large expenses and with-

US 9,443,038 B2

9

out spending large amounts of time in configuring and
maintaining the tag-associated data-object storage system, a
tag-associated data-object storage system providing the user
interface discussed with reference to FIGS. 8A-1 may, over
time, become increasingly less useful to users as a result of
tag explosion. When the list of tags displayed to a user
during the data-object-entry process, as discussed above
with reference to FIG. 81, is relatively short, a user may
quickly decide which tags to associate with the new data
object and, more importantly, the user or another users can
subsequently easily retrieve data objects by selecting appro-
priate tags from a relatively short list of possible candidate
tags associated with the desired data object or data objects
for retrieval. However, because each user is free to define
new tags and associate new tags with new data objects, it is
common for the number of tags to greatly increase, or
explode, over time, resulting in a much less functional and
useful data-object storage system.

FIG. 9 illustrates a portion of a tag list for a domain of a
tag-associated data-object storage system that has experi-
enced tag explosion. A portion of the tag list 902 is not only
long and difficult to read through in order to select tags for
either storage or retrieval operations, but also includes many
similar and synonymous tags, such as the tags “gamma”
904, “gammarama” 905, and “gammacode” 906. Presum-
ably, all of these tags were meant to have the effect of
associating a data object with the project “gamma,” as was
the originally defined tag “project gamma™ 908. The pres-
ence of groups of related tags, such as tags 904-906 and 908
in FIG. 9, results in a partitioning of conceptually related
data objects into subgroups, making searches for data
objects associated with project gamma a relatively complex
and non-intuitive task. Certain tag-associated data-object-
storage-system user interfaces may allow for Boolean-alge-
bra for logic expressions that include tags as terms, so that
a user can specify a desire to retrieve all data objects
associated with any one of the set of tags 904-906 and 908
in FIG. 9:

gamma OR gammarama OR gammacode OR project

gamma

However, even with this functionality, a user is still required
to know that there are four different tags used to associated
data objects with project gamma. As the list of tags increases
in length, the chance that users define new tags when adding
new data objects to the tag-associated data-object storage
system correspondingly increases, since users may not have
the time or patience to read through a long list of tags in
order to decide whether or not one or more already-defined
tags would be appropriate for the new data object.

FIGS. 10A-B illustrate two general trends related to tag
explosion. In FIG. 10A, time is plotted with respect to the
horizontal axis 1002 and the number of user-defined tags is
plotted with respect to the vertical axis 1004. Over time, the
number of tags initially increases slowly 1006 and then
begins to increase very steeply 1008 until so many tags have
been defined that the system becomes increasingly less
useful to users, who therefore begin to less frequently use
the system and therefore less frequently define new tags
1010. Similar plots are obtained by graphing the number of
tags defined within a tag-associated data-object storage
system with respect to the number of users of the tag-
associated data-object storage system. Tag proliferation is,
in other words, correlated with time, number of users, and
with other parameters, including the user interface of the
tag-associated data-object storage system. FIG. 10B illus-
trates the average amount of time needed to locate a par-
ticular data object stored in the tag-associated data-object

30

35

40

45

10

storage system, plotted with respect to the vertical axis 1002,
as a function of the number of tags defined in the tag-
associated data-object storage system, plotted with respect
to the horizontal axis 1004. Initially, until a minimal set of
tags has been defined by users, the time to locate data objects
may be significant, but modest 1006. As more tags are
defined and associated with data objects, the time to locate
a particular data object decreases to a minimal point 1008
and then begin to steeply increase 1010 as the number of
user-defined tags increases past the optimal number of tags
corresponding to the minimal average data-object-location
time.

Embodiments of the present invention were devised in
order to constrain tag explosion and encourage users to
define only a sufficient number of tags needed for optimal or
near-optimal data-object retrieval, as well as to facilitate
other tag-associated data-object storage system tasks,
including adding data objects to the tag-associated data-
object storage system. FIG. 11 illustrates ramifications of the
principles of embodiments of the present invention at a
user-interface level. In FIG. 11, a user has selected a
particular email 1102 to add to the tag-associated data-object
storage system as a new data object. According to embodi-
ments of the present invention, the tag-associated data-
object storage system analyzes the selected recipient data
object in order to automatically select one or more of the
pre-existing tags most likely to be suitable candidates for
association with the new data object 1104, similarly select-
ing a set of candidate groups for the new data object 1106
when data-object groups are supported. Again, note that
groups need not be, and are preferably not, supported in
many embodiments of the present invention, as discussed
above. The groups button and associated candidate groups
window 1106 may be entirely omitted from the user inter-
face, in these cases. By automatically generating lists of
candidate tags and groups, the tag-associated data-object
storage system relieves the user of the burden of reading
through the list of already-defined tags and groups in order
to evaluate which tags to associate with new data objects and
provides candidate tags that are appropriate by a well-
defined new-data-object-to-already-stored-data-objects
comparison method. with candidate tags being those tags
associated with already stored data objects most similar to
the new data object to be added to the tag-associated
data-object storage system. Furthermore, according to the
present invention, the user interface does not provide a
simplified new-tag-definition feature during the data-object
entry process that would enable a user to easily define new
tags for the new data object. Of course, the user interface
does provide sufficient features, such as add button III 0, to
allow a user to define new tags at any point in time.
However, by making the tag-definition process a separate
step, the user interface encourages users to select tags from
a list of pre-existing tags for association with new data
objects, rather than casually or carelessly defining new tags
for each new data object entered into the system.

FIG. 12 illustrates a basic comparison operation by which
two documents can be compared to produce a similarity
metric. In FIG. 12, data object J 1202 is compared to data
object Q 1204 to generate a real-valued numeric similarity
metric s 1206 that ranges from 0.0 to 1.0, with 0.0 indicating
no similarity and 1.0 indicating that the two data objects are
essentially identical. As discussed above, each data object is
associated with a characteristic vector. Thus, data object Q
1204 is associated with characteristic vector Q 1208 and
data object J 1202 is associated with characteristic vector J
1210. According to one embodiment of the present inven-

US 9,443,038 B2

11

tion, the similarly metric s 1206 can be computed as the dot
product of the characteristic vector J 1210 with the transpose
of the characteristic vector Q, Q7 1214. Recall that charac-
teristic vectors are normalized. When there is no similarity
between the two data objects, the characteristic vectors are
orthogonal, and the dot product produces the value “0.”
Conversely, when a data object is compared with itself, the
two characteristic vectors are parallel, in a high-dimensional
space, and therefore the dot product of the parallel normal-
ized vectors is 1.0. In Euclidian two-dimensional space, R,
a familiar formula for the dot product of two vectors is:

A-B=|4|Blcos 6

where 0 is the angle formed by placing the ends of the two
vectors at a common point. In this case, cos 0 is equivalent
to the similarity metric s, ranging from 0.0. for orthogonal
vectors A and B, to 1.0, for parallel vectors A and B with
lengths equal to 1.0.

FIG. 13 illustrates a cumulative characteristic vector. As
shown in FIG. 13, a collection of data objects J,, I, J5, . .
. 1302 can be characterized by a single, cumulative charac-
teristic vector 1304 that can be computed as the sum of the
characteristic vectors of the individual data objects divided
by the number of the data objects:

Ji+dr+Js .

72 s I
m

where m is the number of data objects, J;, I,, . . . are the
characteristic vectors for the data objects, and I is the
cumulative characteristic vector for the collection of data
objects. The dot product of a characteristic vector of a new
data object and a cumulative characteristic vector is equiva-
lent to the average of the dot products of the characteristic
vector for the new data object and each characteristic vector
for each data object in a collection of data objects:

m
E Ji-Q"
=

- 1
J-QT:(ZJ1+J2+J3+... Jm]-Q =

m

Thus, a data object can be compared to a collection of data
objects by computing the dot product of the characteristic
vector for the data object with the cumulative characteristic
vector for the collection of data objects.

For comparing two data objects, or a data object to a
group of data objects, associated with characteristic vectors
T and Q, the dot-product of the two vectors J-Q” provides a
relatively straightforward approach to computing a similar-
ity metric that reflects the similarity of the two data objects
or of a data object to a group of data objects. However, to
provide additional flexibility and adaptability in similarity-
metric computation. one or both vectors J and Q may be first
multiplied, in a Shur-product element-by-element multipli-
cation, by weighting vectors to adjust the comparison:

s=(w,;O0) (w007
where O is a symbol for the Shur product; and
w, and w, are normalized weighting vectors with ele-
ments that range in value between 0 and 1, either or
both of which are optional.
The weighting-vector multiplication essentially redistributes
the significance of individual elements of the characteristic

10

15

20

25

30

35

40

45

55

60

65

12

vectors, allowing particular aspects or clements to be
emphasized or deemphasized.

FIGS. 14A-F illustrate, using graphs of discrete functions,
a technique for selecting candidate tags for a data object
according to one embodiment of the present invention.
FIGS. 14A-F each show a graph in which computed simi-
larity metrics s, obtained by comparison of a new data object
to each of a number of single-tag-defined groups of data
objects already stored in a tag-associated data-object storage
system, are plotted with respect to the vertical axis 1402,
with respect to the tag defining the corresponding group
used in computing the similarity metric s, plotted with
respect to the horizontal axis 1404. In other words, consid-
ering FIG. 14A, the plotted value 1406 is the similarity
metric generated by comparing a new data object to a group
of already stored data objects associated with tag 1408. In
the process of selecting candidate tags, a new data object is
compared against each group defined by an individual tag
within a domain of the tag-associated data-object storage
system into which the new data object is to be entered.
Candidate tags are selected as tags that define groups that,
when compared to the new data object, generate the highest
similarity metrics. In the plots shown in FIGS. 14A-F, the
tags defining groups are sorted in descending order with
respect to the value of the similarity metrics generated by
comparing a new data object to the groups.

In considering a plot of similarity metrics versus tags, as
shown in FIGS. 14A-F, three different cases are possible. In
a first case, shown in FIGS. 14A-B, the initial, high simi-
larity-metric-value portion of the graph bows upward from
a line (1410 in FIG. 14B) connecting the highest-valued
similarity metric 1412 and the lowest-valued similarity
metric 1414. In a second case, shown in FIGS. 14C-D, the
initial portion of the graph is coincident with the line
connecting the highest-valued similarity metric and the
lowest-valued similarity metric. In a final case, illustrated in
FIGS. 14E-F, the initial portion of the curve falls below the
line connecting the highest-valued similarity metric with the
lowest-valued similarity metric.

In the first case, illustrated in FIGS. 14A-B, one approach
to selecting a set of candidate tags is to compute, for each
plotted similarity metric following the first, highest-valued
similarity metric 1412, a drop, in similarity-metric value,
from the previously plotted similarity metric to the currently
considered similarity-metric value. Because the initial com-
puted drop is necessarily less than an average, overall drop
computed as the total drop, from the highest-valued simi-
larity metric 1412 to the lowest-valued similarity metric
1414 divided by the total number of computed drops, or the
number of plotted similarity metrics minus one, a drop
greater than the average drop must necessarily occur for at
least one plotted similarity metric. In FIG. 14D, for example,
the drop between plotted similarity metric 1416 and plotted
similarity metric 1418, corresponding to tags 1420 and
1422, respectively, is greater than the average drop com-
puted from the slope of line 1410. Plotted similarity metric
1416 corresponding to tag 1420 is then selected as an initial
end point, and all preceding similarity metrics and corre-
sponding tags comprise an initial set. In a next step, the
average drop from the highest-valued similarity metric 1412
to the end point 1416 of the initial set is computed, and the
highest-valued similarity metric 1412 and all successive
similarity metrics with computed drops less than the average
drop, which, in the example shown in FIG. 14B, includes the
similarity metrics up through similarity metric 1424, are
selected as a final set of similarity metrics. The tags corre-
sponding to this final set of similarity metrics, 1430-1435 in

US 9,443,038 B2

13

FIG. 14B, are selected as the candidate tags that are sug-
gested to a user for the new data object that was compared
against to all of the groups of already-stored data objects
defined by single tags.

In the second case, shown in FIGS. 14C-D, the drop in
similarity-metric value computed for the first pair of plotted
similarity metrics 1440-1441 is equal to the average drop
computed by dividing the total drop, from the highest-
valued similarity metric 1440 to the lowest-valued similarity
metric 1442 by the number of drops, or number of plotted
similarity metrics minus one. In order to select a set of
candidate tags, up to some maximum number, generally far
smaller than the total number of possible candidate tags, the
similarity metrics are considered, from the highest-valued
similarity metric downward, until the computed drop in
similarity-metric value is not equal to the average computed
drop. In other words, were the maximum number of simi-
larity metrics to fall along line 1444 connecting the highest-
valued similarity metric 1440 with the lowest-valued simi-
larity metric 1442, the tags corresponding to the maximum
number of plotted similarity metric values of the highest-
valued portion of the curve would be selected as a candidate-
tag set. However, when the drop between two similarity
metrics does not equal the computed average drop, then only
a subset of the maximum number of allowable candidate
tags is returned. In FIG. 14D, for example, given the
maximum number of candidate tags is equal to six, only the
four tags 1446 corresponding to the first four highest-valued
similarity metrics 1440-1441 and 1448-1449 would be
returned as candidate tags, since the drop between similarity
metric 1449 and similarity metric 1450 is greater than the
computed average drop.

In the final case, illustrated in FIGS. 14E-F, a similar
approach to that used in the first case is applied, with the
sequence of drops computed for plotted similarity metrics
followed until a drop less than the computed average drop is
detected. The tags corresponding to these similarity metrics
1460 are taken as an initial set, and the average drop
computed for the initial set. Then, a second, final set of
candidate tags is selected by starting at the highest-valued
similarity metric 1462 and proceeding to accept each suc-
cessive similarity metric provided that the computed drop is
greater than the average computed drop for the initial set.
Tags corresponding to the final set are returned as candidate
tags. In alternate embodiments, the final set may be
decreased by half, since, in the third case, the initial highest-
valued similarity metric is clearly the best candidate. In one
embodiments of the present invention, only the tag corre-
sponding to the topmost, highest-valued similarity metric is
chosen as a single candidate tag.

The intent, for all three cases, is to select a small group of
the best candidate tags. Many other alternative candidate-
selection methods are possible, including always selecting
the tag associated with the highest-valued similarity metric,
always selecting the tags associated with a fixed number of
highest-valued similarity metrics, when possible, or select-
ing all tags associated with similarity metrics above a
threshold value. Selection of candidate groups is essentially
identical to selection of candidate tags, with the exception
that, in the case of selection of candidate tags, a new data
object is compared against groups of already-stored data
objects defined by single tags, while in the case of selection
of candidate groups, the groups to which a new data object
are compared are defined by two or more tags.

Next, an implementation of tag and group suggestion
methods that represent one embodiment of the present
invention is provided. FIG. 15 shows a control-flow diagram
for an event loop, running on a user computer, which
underlies a user interface provided to the user by a tag-
associated data-object storage system that represents one

30

45

50

55

14

embodiment of the present invention. The event loop runs
continuously, responding to events that occur as the user
interacts with the tag-associated data-object storage system.
In step 1502, the event loop waits for a next event to occur.
When at least one event has occurred, control flows to step
1504, where the event loop dequeues the first event for
processing from an event queue. If the event corresponds to
a user invoking an add-new-data-object operation, as deter-
mined in step 1506, then an add-data-object routine is called
in step 1508. Other events are handled by the generic event
handler in step 1510. When there are more queued events to
process, as determined in step 1512, the control flows back
to step 1504. Otherwise, control flows back to step 1502,
where the event loops waits for a next event to occur.

FIG. 16 is a control-flow diagram for the routine “add-
DataObject,” called in step 1508 of FI1G. 15 and representing
one embodiment of the present invention. In step 1602, the
routine “addDataObject” allocates a new entity instance,
discussed in greater detail below, for the new data object. In
step 1604, the routine “addDataObject” computes a charac-
teristic vector for the data object and stores the characteristic
vector in the data-object storage system, placing a reference
to the characteristic vector in the allocated entity instance. In
step 1606, the routine “add data object” retrieves an array of
pointers to instances of a class tag that represent all of the
tags currently defined for the domain of stored data objects
to which the new data object is to be stored. Similarly, in step
1608, an array of pointers to instances of a group class are
retrieved from the data-object storage system, the instances
of the class group representing all groups defined in the
domain to which the new data object is to be added. In step
1610, the routine “addDataObject” invokes the routine “tag-
Suggestions” in order to select a set of candidate tags
displayed to the user, as discussed above with reference to
FIG. 11. In step 1612, the returned candidate tags are
displayed to the user via the user interface. Similarly, in step
1614, the routine “groupSuggestions” is called to select a set
of candidate groups to display to the user, as discussed above
with reference to FIG. 11. In step 1616, the returned can-
didate groups are displayed to the user via the user interface.
Finally in step 1618, the routine “finishAddingDataObject”
is called to carry out additional tasks needed to store a new
data object into the tag-associated data-object storage sys-
tem. For example, tag and group selections made by the user
are processed in order to associate a list of one or more tags
with the new data object. The new data object is then
physically stored, or, in certain cases, a reference to the data
object is stored, in the tag-associated data-object storage
system. The control-flow diagrams of FIGS. 15 and 16, and
the pseudocode to follow, omit, in the interest of brevity,
handling of various error conditions and other unusual
events and occurrences that may be handled in a production
tag-suggestion system incorporated into a production tag-
associated data-object storage system.

Finally, a pseudocode implementation of the routines
“tagSuggestions” and “groupSuggestions,” called in steps
1612 and 1614 of FIG. 16, are provided.

First, a number of constants are declared:

1 const int MaxTagPerGroup = 5;

2 const int MAX_ELEMENTS = 2000;
3 const double Threshold = 0.00001;

4 const int MaxLinearMinusOne = 5;

The constant “MaxTagPerGroup” defines the maximum
number of tags used to define a group. The constant
“MAX_ELEMENTS” is a maximum number of tags or
groups that can be defined for a particular domain of a
tag-associated data-object storage system, according to one

US 9,443,038 B2

15

embodiment of the present invention. The constant “Thresh-
0ld” is used in comparing similarity metrics obtained as dot
products of characteristic vectors. The constant “MaxLin-
earMinusOne” is the maximum number of candidate tags
that can be selected in the second case, described above with
reference to FIGS. 14C-D.

Next, a number of basic classes are defined sufficiently to
enable discussion of the tagSuggestions and groupSugges-
tions routines:

1 class vector;
2 class cmVector

39
4 public:

5 void add(vector &);

6 double operator * (vector &);
7 cmVector();

8}

9 class string;
10 class tag

1

12 private:

13 string name;

14 cmVector cV;

15 public:

16 double dot(vector* v) {return cV * (*v);};
17 void add(vector& v) {cV.add(v);};

18 };

19 typedef tag* tagPtr;

20 class group : public tag

21 {

private:
tagPtr tags[MaxTagPerGroup];
int numTags;

public:
int addTag(tag* t);
int deleteTag (tag* t);
29 J;
30 typedef group* groupPtr;
31 class entity

32 {

33 private:

34 string name;

35 vector v;

36 public:

37 vector® getVector() {return &(v);};
38}

39 typedef struct arrayElement {

40 tagPtr t;

41 double cValue;

42 } aElement;
43 typedef aElement* aElementPtr;

The classes include: (1) vector, declared on line 1, an
instance of which is a characteristic vector for a data object;
(2) cmVector, declared beginning on line 2, above, an
instance of which is a cumulative characteristic vector
discussed above with reference to FIG. 13; (3) string, a
typical string class for storing names of tags and groups; (4)
tag, an instance of which represents a user-defined tag within
a tag-associated data-object storage system that represents
one embodiment of the present invention; (5) group, an
instance of which is a user-defined group stored in a tag-
associated data-object storage system that represents one
embodiment of the present invention; (6) entity, an instance
of which represents a data object; and (7) arrayElement,
instances of which are used for the accumulating computed
similarity metrics and sorting tags or groups based on
similarity-metric values.

Next, a comparison routine used by a quick-sort sorting
function is provided:

10

15

20

25

30

35

40

45

50

55

60

65

16
1 int compare(const void* eleml, const void* elem?2)
24
3 if (((aElement*)elem1)->cValue > ((aElement*)elem2)->cValue)
4 return —1;
5 else if (((aElement*)eleml)->cValue ==
6 ((aElement*)elem?2)->cValue)
7 return 0;
8 else return 1;
9}

This routine compares computed similarity metrics for two
tags or groups as part of sorting tags and groups based on
similarity-metric values.

Next, a routine used for comparison of similarity metrics
is provided:

1 int compareScores (double a, double b)
24

3 if ((a - b) > Threshold) return 1;

4 else if ((a - b) < —Threshold) return -1;
5 else return O;

61

The routine “compare Scores” compares two similarity
metrics, a and b. When the difference between the two
similarity metrics is less than or equal to the constant
“Threshold,” then the routine “compareScores” returns a
value 0, indicating that the two similarity metrics are the
same value. Otherwise, when a is greater than b, the value
“1” is returned, and when b is greater than a, the value -1
is returned.
Next, the routine “curvePick” is provided:

int curvePick(aElementPtr p, double edrop, int sz, bool bowedUp)

int i, j, k, dir;
double drop, avgDrop;
for (i=2,j=1;1i<sz i++, j++)

drop = p[j].cValue - p[i].cValue;
dir = compareScores(drop, edrop);
if (bowedUp && dir == 1) Il

NNy RN He NEV RN N VIR S
—~

10 (!bowedUp && dir == -1)) break;
11

12 avgDrop = (p[0].cValue - p[j].cValue) / j;

13 for(j=1,k=0;]j <i; j++, k++)

14 {

15 drop = p[k].cValue — p[j].cValue;

16 dir = compareScores(drop, avgDrop);

17 if (bowedUp && dir == 1) Il

18 (!bowedUp && dir == -1)) break;
19 1

20 if (!bowedUp) k =k / 2;

21 if (k< 1) return 1;

22 else return k;

23 }

This routine implements the tag or group candidate selection
methods discussed above with reference to FIGS. 14A-B
and 14E-F. A sorted list of instances of the class “arrayEle-
ment” are referenced by argument “p” and a computed
average, or expected, drop in similarity metric value
between successive tags or groups is provided by the argu-
ment “edrop.” Argument “sz” indicates the number of tags
or groups for which similarity metrics are provided in the
array referenced by argument “p,” and the Boolean argu-
ment “bowedUp” indicates which of the two cases discussed
above with reference to FIGS. 14A-B and 14E-F is to be
handled. In a first for-loop of lines 5-11, the computed
similarity metrics are traversed, from highest-valued simi-

US 9,443,038 B2

17

larity metric to lowest-valued similarity metric, in order to
determine when the drop between two successive similarity
metrics is greater, for case 1, or lower, for case 3, than the
expected drop. Upon completion of this for-loop, the itera-
tion variable “j” indicates a last similarity metric in the
initial set of similarity metrics, as discussed above with
reference to FIGS. 14A-F. On line 12, the average drop in
similarity-metric value over the initial set is computed, and
in the far-loop of lines 13-19, the drops in similarity-metric
values are again considered, for the initial set, in order to
identify the first similarity metric for which the drop
exceeds, in case 1, or falls below, in case 2, the computed
average drop for the initial set. At the end of the second
for-loop, the iteration variable “k” is set to the final tag or
group in the final set of candidate tags or groups. In the third
case, k is divided by 2, on line 20, to further decrease the
number of candidate tags or groups.
Next, the function “linearPick” is provided:

1 int linearPick(aElementPtr p, double edrop, int sz)

3 inti,j;

4 double drop;

5 if (sz > MaxLinearMinusOne) sz = MaxLinearMinusOne;
6 for(i=2,j=1;1i<sz; i++, j++)
7
8

drop = p[j].cValue - p[i].cValue;
9 if ({compareScores(drop, edrop)) return j;
10 3}
11 return j;
12}

This function traverses the computed similarity-metric
values to identify a cutoff point for candidate tags, as
discussed above with reference to FIGS. 14C-D. At most, a
maximum number of candidates are selected equal to the
constant MaxLinearMinusOne+1.

Next, the function “tagSuggestions” is provided:

1 int tagSuggestions (tagPtr* tags, int numTags, entity &)

3 inti,j;

4 aFlement bufferf MAX_ELEMENTS];

5 for (i = 0; i < numTags; i++)

6 1

7 buffer[i].t = (tags[i]);

8 buffer[i].cValue = tags[i]->dot(e.getVector());

9
10 gsort((void *)buffer, (size_t)numTags,
11 sizeof(aElement), compare);
12 j = suggestions(buffer, numTags);
13 for (i=0;1<j; i++)
14 {
15 tags[i] = buffer[i].t;
16}
17 return j;
18 }

The function “tagSuggestions” receives an array of pointers
to the user-defined tags, an indication of the number of
user-defined tags, and a reference to a new data object that
is to be added to a tag-associated data-object storage system
that represents one embodiment of the present invention. In
a for-loop of lines 5-9, the similarity metrics obtained by
comparing the new data object to each group of already-
stored data objects defined by a single tag are computed and
stored in a buffer, along with a pointer to the tags. Then, on
line 10, a quick-sort routine is called to sort the list of tags
and associated similarity metrics in descending order by
similarity-metric value. On line 12, the routine “sugges-

10

15

20

25

30

35

40

45

50

55

18

tions” is called in order to select the candidate tags, and, in
the for-loop of lines 13-16, the returned candidate tags are
placed into the array referenced by the argument “tags.”
Next, an implementation of the routine “suggestions”
called in line 12 of the routine “tagSuggestions,” is provided
according to one embodiment of the present invention:

1 int suggestions(aElementPtr p, int num)

3 double edrop, fdrop;

4 int sz = num - 1;

5 if (num < 2) return num;

6 fdrop = p[0].cValue — p[1].cValue;
7

8

if (num == 2)

9 if (fdrop > 0.1) return 1;
10 else return 2;
1}
12 edrop = (p[0].cValue - p[sz].cValue) / sz;
13 switch (compareScores(fdrop, edrop))
14
15 case —1: return (curvePick(p, edrop, sz, true));
16 case 1: return (curvePick(p, edrop, sz, false));
17 case 0: return (linearPick(p, edrop, sz));
18 default: return 0;
19
20 }

The routine “suggestions” computes a first drop in similar-
ity-metric value, fdrop, as well as the computed average
similarity-metric drop over the entire set of tags or groups,
edrop, and uses these values to determine which of the three
cases, discussed above with reference to FIGS. 14A-F,
correspond to the input array of computed similarity-metric
values associated with a set of tags or groups. Then, in the
switch statement of lines 13-19, the appropriate function is
called in order to select candidate tags or groups based on
which case is detected.
Finally the routine “groupSuggestions” is provided:

1 int groupSuggestions (groupPtr* groups, int numGroups,
2 entity & e)

3{

4 return (tagSuggestions((tagPtr*)groups, numGroups, €));
5}

The routine “groupSuggestions” is essentially identical to
the routine “tagSuggestions.”

In various embodiments of the present invention, thresh-
olds are employed at various points in the tag-selection
process. In the above implementation, for example, the
constant “Threshold” determines a range about O in which
the result of subtraction of two similarity metrics is consid-
ered to indicate that the two similarity metrics are essentially
equal, in value. The threshold may need to dynamically vary,
or need to be user-settable, since an appropriate threshold
value may depend on the size, in elements, of characteristic
vectors as well as the values generated for characteristic-
vector elements for particular types of data objects. Addi-
tional thresholds may be used, including thresholds that
define those tags suitable for selection, in various alternative
embodiments of the present invention. These additional
thresholds are, in general, both dynamic and can be specified
directly by users, in many embodiments of the present
invention. Certain of the tag-associated data-object storage
systems that represent embodiments of the present invention
automatically adjust thresholds to optimize system behavior,
including optimizing the number of tags provided as sug-
gestions for various types of data objects, or to optimize the

US 9,443,038 B2

19

relevance of tag suggestions, as measured by the frequency
at which suggested tags are selected by users for describing
data objects. In similar fashion, certain of the tag-associated
data-object storage systems that represent embodiments of
the present invention automatically adjust weights by which
characteristic-vector elements are multiplied in order to
adjust the relative significance of the elements with respect
to the type of data object described by the characteristic
vector.

5

Although the present invention has been described in 10

terms of particular embodiments, it is not intended that the
invention be limited to these embodiments. Modifications
will be apparent to those skilled in the art. For example,
method and system embodiments of the present invention
for selecting candidate tags and groups for suggestion to
users can be employed in a variety of different tag-associated
data-object storage systems for a variety of different situa-
tions in addition to storing of new data objects. The tag-
and-group suggestion methods that represent embodiments
of the present invention can be implemented in any number
of different programming languages in various ways by
varying familiar programming and development parameters,
including control structures selected, data structures used,
modular organization, and other such parameters. While
several different methods for tag and group candidate selec-
tion have been discussed, above, many additional techniques
may be employed to select a relatively small number of tags
or groups for suggestion to users. In all embodiments, a
similarity metric is computed, by some means, in order to
determine relative similarities of a data object to groups of
data objects defined by tags in order to determine those tags
that define groups of data objects having data contents with
the most similarity to the data object being evaluated.
Although characteristic vectors and dot products can be
used, as discussed above, there are many other possible
methods for computing similarity between data objects and
groups of data objects based on the content of the data
objects. Tag suggestions are often provided as part of the
process by which a user adds data objects to a tag-associated
data-object storage system, but may be provided in many
other instances, including when lists of data objects are
returned to users who access and retrieve data objects from
the tag-associated data-object storage system. In any case
where a data object or data-object identifier is displayed to
a user, a set of suggested data tags may also be displayed, to
provide context for the data object. Often, a user may
associate additional tags with a data object even after the
object has been added to a tag-associated data-object storage
system, and tag suggestion can facilitate these tag associa-
tions subsequent to data-object addition.

The foregoing description, for purposes of explanation,
used specific nomenclature to provide a thorough under-
standing of the invention. However, it will be apparent to
one skilled in the art that the specific details are not required
in order to practice the invention. The foregoing descriptions
of specific embodiments of the present invention are pre-
sented for purpose of illustration and description. They are
not intended to be exhaustive or to limit the invention to the
precise forms disclosed. Many modifications and variations
are possible in view of the above teachings. The embodi-
ments are shown and described in order to best explain the
principles of the invention and its practical applications, to
thereby enable others skilled in the art to best utilize the
invention and various embodiments with various modifica-
tions as are suited to the particular use contemplated. It is
intended that the scope of the invention be defined by the
following claims and their equivalents:

15

20

25

30

35

40

45

50

55

60

65

20

The invention claimed is:

1. A tag-suggestion system included as a component of a
tag-associated data-object storage system that is imple-
mented as one or more software programs, hardware cir-
cuits, or a combination of software programs and hardware
circuits within one or more computer systems that include,
or that access, one or more data-storage devices, the tag-
suggestion system comprising:

a set of defined tags stored in the tag-associated data-

object storage system;

tag-associated data objects stored in tag-associated data-
object storage system;

a comparator that compares a data object to other data
objects stored in the tag-associated data-object storage
system in order to determine those data objects stored
in the tag-associated data-object storage system which
are most similar to the data object for which tags are to
be associated by carrying out a dot product operation
on a characteristic vector that characterizes data con-
tents of the data object for which tags are to be
associated and a cumulative characteristic vector that
characterizes cumulative data contents of the data
objects associated with a particular tag, the dot product
operation returning a numerically valued similarity
metric, storing results of comparisons in the one or
more data-storage devices; and

a tag selector that selects tags associated with a number of
data objects stored in tag-associated data-object storage
system most similar to the data object for which tags
are to be associated.

2. The tag-suggestion system of claim 1

wherein the tag selector selects, as candidate tags, a
number of tags associated with those data objects
stored in the tag-associated data-object storage system
most similar to the data object for which tags are to be
associated;

wherein the tag selector selects the candidate tags by
for each of, or each of a subset of, the set of defined tags

stored in the tag-associated data-object storage sys-

tem,

computing a similarity metric, by the comparator, by
comparing the data object for which tags are to be
associated to those data objects associated with a
currently considered tag, and

storing the computed similarity metric together with
the currently considered tag in an electronic stor-
age medium; and

selecting, as a candidate tags, those tags associated with
similarity metrics that indicate a greatest similarity
between the data object for which tags are to be
associated and data objects compared to the data
object for which tags are to be associated to generate
the similarity metrics; and
wherein selecting, as a candidate tags, those tags associ-
ated with similarity metrics that indicate a greatest
similarity between the data object for which tags are to
be associated and data objects compared to the data
object for which tags are to be associated to generate
the similarity metrics further includes
sorting the computed similarity metrics into a sorted list
of similarity metrics;

determining an average similarity-metric-value drop
for successive similarity metrics in the sorted list of
similarity metrics;

determining whether a first similarity-metric drop com-
puted from the first and second similarity metrics is

US 9,443,038 B2

21

greater than, equal to, or less than the average
similarity-metric-value drop; and

applying a first candidate-tag selection method when
the first similarity-metric drop is greater than the
average similarity-metric-value drop, a second can-
didate-tag-selection method when the first similarity-
metric drop is equal to the average similarity-metric-
value drop, or a third candidate-tag-selection method
when the first similarity-metric drop is less than the
average similarity-metric-value drop.

3. The tag-suggestion system of claim 2 wherein the first,
second, and third candidate-tag-selection methods analyze a
function of similarity metrics with respect to tags to deter-
mine when a turning point occurs in the function, and selects
those tags associated with similarity metrics with values
above the similarity metric of the turning point.

4. The tag-suggestion system of claim 1 wherein, prior to
carrying out the dot product operation on a characteristic
vector that characterizes data contents of the data object for
which tags are to be associated and a cumulative character-
istic vector that characterizes cumulative data contents of the
data objects associated with a particular tag, the comparator
multiplies one or more elements of the characteristic vector
by weights, in order to adjust the relative significance of the
characteristic-vector elements.

5. The tag-suggestion system of claim 4 wherein the
comparator multiplies one or more elements of the charac-
teristic vector by weights that are computed based on a type
of the data object.

6. A method, carried out in a tag-associated data-object
storage system that is implemented as one or more software
programs, hardware circuits, or a combination of software
programs and hardware circuits within one or more com-
puter systems that include, or access, one or more data-
storage devices, the method comprising:

comparing, by a comparator, a data object to other data

objects stored in the tag-associated data-object storage
system in order to determine those data objects stored
in the tag-associated data-object storage system which
are most similar to the data object for which tags are to
be associated by carrying out a dot product operation
on a characteristic vector that characterizes data con-
tents of the data object for which tags are to be
associated and a cumulative characteristic vector that
characterizes cumulative data contents of the data
objects associated with a particular tag, the dot product
operation returning a numerically valued similarity
metric, storing results of comparisons in the one or
more data-storage devices;

selecting, by a tag selector, tags associated with a number

of data objects stored in tag-associated data-object
storage system most similar to the data object for which
tags are to be associated.

10

15

20

25

30

35

40

45

50

22

7. The method of claim 6

wherein the tag selector selects, as candidate tags, a
number of tags associated with those data objects
stored in the tag-associated data-object storage system
most similar to the data object for which tags are to be
associated;

wherein the tag selector selects the candidate tags by

for each of, or each of a subset of, the set of defined tags
stored in the tag-associated data-object storage sys-
tem,
computing a similarity metric, by the comparator, by
comparing the data object for which tags are to be
associated to those data objects associated with a
currently considered tag, and
storing the computed similarity metric together with
the currently considered tag in an electronic stor-
age medium; and
selecting, as a candidate tags, those tags associated with
similarity metrics that indicate a greatest similarity
between the data object for which tags are to be
associated and data objects compared to the data
object for which tags are to be associated to generate
the similarity metrics; and

wherein selecting, as a candidate tags, those tags associ-

ated with similarity metrics that indicate a greatest

similarity between the data object for which tags are to

be associated and data objects compared to the data

object for which tags are to be associated to generate

the similarity metrics further includes

sorting the computed similarity metrics into a sorted list
of similarity metrics;

determining an average similarity-metric-value drop
for successive similarity metrics in the sorted list of
similarity metrics;

determining whether a first similarity-metric drop com-
puted from the first and second similarity metrics is
greater than, equal to, or less than the average
similarity-metric-value drop; and

applying a first candidate-tag selection method when
the first similarity-metric drop is greater than the
average similarity-metric-value drop, a second can-
didate-tag-selection method when the first similarity-
metric drop is equal to the average similarity-metric-
value drop, or a third candidate-tag-selection method
when the first similarity-metric drop is less than the
average similarity-metric-value drop.

8. The method of claim 7 wherein the first, second, and
third candidate-tag-selection methods analyze a function of
similarity metrics with respect to tags to determine when a
turning point occurs in the function, and selects those tags
associated with similarity metrics with values above the
similarity metric of the turning point.

#* #* #* #* #*

